skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dubey, Harsh Vardhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of sequential multiple hypothesis testing with nontrivial data collection costs. This problem appears, for example, when conducting biological experiments to identify differentially expressed genes of a disease process. This work builds on the generalized α-investing framework which enables control of the marginal false discovery rate in a sequential testing setting. We make a theoretical analysis of the long term asymptotic behavior of α-wealth which motivates a consideration of sample size in the α-investing decision rule. Posing the testing process as a game with nature, we construct a decision rule that optimizes the expected α-wealth reward (ERO) and provides an optimal sample size for each test. Empirical results show that a cost-aware ERO decision rule correctly rejects more false null hypotheses than other methods for $n=1$ where n is the sample size. When the sample size is not fixed cost-aware ERO uses a prior on the null hypothesis to adaptively allocate of the sample budget to each test. We extend cost-aware ERO investing to finite-horizon testing which enables the decision rule to allocate samples in a non-myopic manner. Finally, empirical tests on real data sets from biological experiments show that cost-aware ERO balances the allocation of samples to an individual test against the allocation of samples across multiple tests. 
    more » « less